Biblio

Export 338 results:
Author Keyword Title Type [ Year(Asc)]
Filters: Filter is   [Clear All Filters]
2014
Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K.  2014.  CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting. International Journal of Hydrogen Energy. 39(25):13381-13388.
Gibbons WT, Venstrom LJ, De Smith RM, Davidson JH, Jackson GS.  2014.  Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting. Physical Chemistry Chemical Physics. 16(27):14271.
Hao Y, Yang C-K, Haile SM.  2014.  Ceria–zirconia solid solutions (Ce1–xZrxO2−δ, x≤0.2) for solar thermochemical water splitting: A thermodynamic study. Chemistry of Materials. 26(20):6073-6082.
Levêque G, Abanades S, Jumas J-C, Olivier-Fourcade J.  2014.  Characterization of Two-Step Tin-Based Redox System for Thermochemical Fuel Production from Solar-Driven CO 2 and H 2 O Splitting Cycle. Industrial & Engineering Chemistry Research. 53(14):5668-5677.
Miller JE, McDaniel AH, Allendorf MD.  2014.  Considerations in the design of materials for solar-driven fuel production using metal-oxide thermochemical cycles. Advanced Energy Materials. 4(2):1300469.
Ermanoski I., Miller J.E, Allendorf M.D.  2014.  Efficiency maximization in solar-thermochemical fuel production: Challenging the concept of isothermal water splitting. Physical Chemistry Chemical Physics. 16(18):8418.
McDaniel A.H., Ambrosini A., Coker E.N., Miller J.E., Chueh W.C., O’Hayre R., Tong J..  2014.  Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production. Energy Procedia. 49:2009-2018.
Deml AM, Stevanović V, Muhich CL, Musgrave CB, O'Hayre R.  2014.  Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics. Energy & Environmental Science. 7(6):1996.
2013
Houaijia A, Sattler C, Roeb M, Lange M, Breuer S, Säck JPeter.  2013.  Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water. Solar Energy. 97:26-38.
Bulfin B., Lowe A.J, Keogh K.A, Murphy B.E, Lübben O., Krasnikov S.A, Shvets I.V.  2013.  Analytical Model of CeO 2 Oxidation and Reduction. The Journal of Physical Chemistry C. 117(46):24129-24137.
Siegel NP, Ermanoski I.  2013.  A Beam-down Central Receiver for Solar Thermochemical Hydrogen Production.
Allen KM, Auyeung N, Rahmatian N, Klausner JF, Coker EN.  2013.  Cobalt Ferrite in YSZ for Use as Reactive Material in Solar Thermochemical Water and Carbon Dioxide Splitting, Part II: Kinetic Modeling. JOM.
Allendorf MD, Miller JE, McDaniel AH.  2013.  Design of Materials for Solar-Driven Fuel Production by Metal-Oxide Thermochemical Cycles. Electrochemical Society Interface. 22(4):63-68.
Hao Y, Yang C-K, Haile SM.  2013.  High-temperature isothermal chemical cycling for solar-driven fuel production. Physical Chemistry Chemical Physics. 15(40):17084.
Scheffe JR, McDaniel AH, Allendorf MD, Weimer AW.  2013.  Kinetics and mechanism of solar-thermochemical H2 production by oxidation of a cobalt ferrite–zirconia composite. Energy & Environmental Science. 6(3):963.
Keene DJ, Davidson JH, Lipiński W.  2013.  A Model of Transient Heat and Mass Transfer in a Heterogeneous Medium of Ceria Undergoing Nonstoichiometric Reduction. Journal of Heat Transfer. 135(5):052701.
Ermanoski I, Siegel NP, Stechel EB.  2013.  A new reactor concept for efficient solar-thermochemical fuel production. Journal of Solar Energy Engineering. 135(3):031002.
Chen Z, Dinh H, Miller E.  2013.  Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. SpringerBriefs in Energy.
Chaubey R, Sahu S, James OO, Maity S.  2013.  A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews. 23:443-462.
McDaniel AH, Miller EC, Arifin D, Ambrosini A, Coker EN, O'Hayre R, Chueh WC, Tong J.  2013.  Sr- and Mn-doped LaAlO3-δ for solar thermochemical H2 and CO production. Energy & Environmental Science. 6(8):2424-2428.