Biblio

Export 24 results:
Author Keyword [ Title(Desc)] Type Year
Filters: First Letter Of Title is H  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Schieber GL, Stechel EB, Ambrosini A, Miller JE, Loutzenhiser PG.  0.  H 2 O splitting via a two-step solar thermoelectrolytic cycle based on non-stoichiometric ceria redox reactions: Thermodynamic analysis. International Journal of Hydrogen Energy. 42(30):18785-18793.
Lapp J, Davidson JH, Lipiński W.  0.  Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles. Journal of Solar Energy Engineering. 135(3):031004.
Vanka S, Arca E, Cheng S, Sun K, Botton GA, Teeter G, Mi Z.  2018.  High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures. Nano Letters. 18(10):6530-6537.
Lim H, Young JL, Geisz JF, Friedman DJ, Deutsch TG, Yoon J.  2019.  High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. Nature Communications. 10:3388.
Li W, Guan B, Ma L, Hu S, Zhang N, Liu X.  2018.  High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell . Journal of Materials Chemistry A. 6:18057-18066.
O'Brien J.E, Stoots C.M, Herring J.S, McKellar M.G, Harvego E.A, Sohal M.S, Condie K.G.  0.  High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary.
Säck J.-P., Breuer S., Cotelli P., Houaijia A., Lange M., Wullenkord M., Spenke C., Roeb M., Sattler C..  0.  High temperature hydrogen production: Design of a 750kW demonstration plant for a two-step thermochemical cycle. Solar Energy. 135:232-241.
Artini C, Pani M, Lausi A, Masini R, Costa GA.  0.  High Temperature Structural Study of Gd-Doped Ceria by Synchrotron X-ray Diffraction (673 K ≤ T ≤ 1073 K). Inorganic Chemistry. 53(19):10140-10149.
Jung H-Y, Huang S-Y, Popov BN.  0.  High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC). Journal of Power Sources. 195(7):1950-1956.
Chueh W.C, Falter C., Abbott M., Scipio D., Furler P., Haile S.M, Steinfeld A..  0.  High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science. 330(6012):1797-1801.
Hwang S, Young JL, Mow R, Laursen AB, Li M, Yang H, Batson PE, Greenblatt M, Steiner MA, Friedman D et al..  2020.  Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layer. Sustainable Energy Fuels. 4(3):1437-1442.
Kim YSeung, Li D, Park EJoo, Wenlei Z, Qiurong S, Zhou Y, Tian H, Lin Y, Serov A, Zulevi B et al..  2020.  Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nature Energy. 5
Colón-Mercado HR, Gorensek MB, Fujimoto CH, Lando AA, Meekins BH.  2022.  High-performance SO2-depolarized electrolysis cell using advanced polymer electrolyte membranes. International Journal of Hydrogen Energy. 47:57-68.
de Groot F.  0.  High-Resolution X-ray Emission and X-ray Absorption Spectroscopy. Chemical Reviews. 101(6):1779-1808.
Hao Y, Yang C-K, Haile SM.  2013.  High-temperature isothermal chemical cycling for solar-driven fuel production. Physical Chemistry Chemical Physics. 15(40):17084.
Ginosar DM, Rollins HW, Petkovic LM, Burch KC, Rush MJ.  0.  High-temperature sulfuric acid decomposition over complex metal oxide catalysts. International Journal of Hydrogen Energy. 34(9):4065-4073.
Singstock N.R, Bartel C.J, Holder A.M, Musgrave C.B.  2020.  High-Throughput Analysis of Materials for Chemical Looping Processes. Advanced Energy Materials. 10(27)
Emery AA, Saal JE, Kirklin S, Hegde VI, Wolverton C.  0.  High-throughput computational screening of perovskites for thermochemical water splitting applications. Chemistry of Materials. 28(16):5621-5634.
Dinh HN, Boardman R, McDaniel A.H., Colon-Mercado H, Ogitsu T., Weber A.Z..  2019.  HydroGEN Overview: A Consortium on Advanced Water Splitting Materials (AWSM). FY 2018 DOE Hydrogen and Fuel Cells Program Annual Progress Report.
Wu W, Ding H, Zhang Y, Ding Y, Katiyar P, Majumdar PK, He T, Ding D.  2018.  Hydrogen Production: 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton-Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C (Adv. Sci. 11/2018). Advanced Science. 5(11):1870070.
Varsano F, Murmura MAnna, Brunetti B, Padella F, La Barbera A, Alvani C, Annesini MCristina.  0.  Hydrogen production by water splitting on manganese ferrite-sodium carbonate mixture: Feasibility tests in a packed bed solar reactor-receiver. International Journal of Hydrogen Energy. 39(36):20920-20929.
Ursua A., Gandia L.M, Sanchis P..  0.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE. 100(2):410-426.
Nakamura T..  1977.  Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy. 19(5):467-475.
Pivovar BS, Ruth MF, Myers DJ, Dinh HN.  2021.  Hydrogen: Targeting \textdollar1/kg in 1 Decade. The Electrochemical Society Interface. 30:61–66.