Export 17 results:
[ Author(Asc)] Keyword Title Type Year
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Döscher H., Young J.L, Geisz J.F, Turner J.A, Deutsch T.G.  0.  Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance. Energy & Environmental Science. 9(1):74-80.
Docao S, Koirala ARaj, Kim MGyu, Hwang IChul, Song MKyung, Yoon KByung.  2017.  Solar photochemical–thermal water splitting at 140 °C with Cu-loaded TiO 2. Energy & Environmental Science. 10(2):628-640.
Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE.  2008.  Solar thermochemical water-splitting ferrite-cycle heat engines. Journal of Solar Energy Engineering. 130(4):041001(1)-041001(8).
Diver RB, Siegel NP, Moss TA, Miller JE, Evans L, Hogan RE, Allendorf MD, Stuecker JN, James DL.  2008.  Innovative Solar Thermochemical Water Splitting.
Dinh HN, Boardman R, McDaniel A.H., Colon-Mercado H, Ogitsu T., Weber A.Z..  2019.  HydroGEN Overview: A Consortium on Advanced Water Splitting Materials (AWSM). FY 2018 DOE Hydrogen and Fuel Cells Program Annual Progress Report.
Ding D, Wu W, He T.  Submitted.  Development of High Performance Intermediate Temperature Proton-Conducting Solid Oxide Electrolysis Cells. 80(9):167-173.
Dimitrakis D.A, Tsongidis N.I, Konstandopoulos A.G.  2016.  Reduction enthalpy and charge distribution of substituted ferrites and doped ceria for thermochemical water and carbon dioxide splitting with DFT+U. Phys. Chem. Chem. Phys.. 18(34):23587-23595.
Dey S, Rao C.NR.  0.  Splitting of CO 2 by Manganite Perovskites to Generate CO by Solar Isothermal Redox Cycling. ACS Energy Letters. 1(1):237-243.
Dey S, Naidu B.S, Govindaraj A., Rao C.NR.  2015.  Noteworthy performance of La1−xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2. Phys. Chem. Chem. Phys.. 17(1):122-125.
Demont A, Abanades S, Beche E.  0.  Investigation of perovskite structures as oxygen-exchange redox materials for hydrogen production from thermochemical two-step water-splitting cycles. The Journal of Physical Chemistry C. 118(24):12682-12692.
Demont A, Abanades S.  2015.  Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides. J. Mater. Chem. A. 3(7):3536-3546.
Deml AM, Stevanović V, Holder AM, Sanders M, O’Hayre R, Musgrave CB.  0.  Tunable oxygen vacancy formation energetics in the complex perovskite oxide SrxLa1–xMnyAl1–yO3. Chemistry of Materials. 26(22):6595-6602.
Deml AM, Stevanović V, Muhich CL, Musgrave CB, O'Hayre R.  2014.  Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics. Energy & Environmental Science. 7(6):1996.
Deml AM, Holder AM, O’Hayre RP, Musgrave CB, Stevanović V.  0.  Intrinsic material properties dictating oxygen vacancy formation energetics in metal oxides. The Journal of Physical Chemistry Letters. 6(10):1948-1953.
DeAngelis AD, Horsley K, Gaillard N.  2018.  Wide Band Gap CuGa(S,Se)2 Thin Films on Transparent Conductive Fluorinated Tin Oxide Substrates as Photocathode Candidates for Tandem Water Splitting Devices. The Journal of Physical Chemistry C. 122(26):14304-14312.
de Groot F.  0.  High-Resolution X-ray Emission and X-ray Absorption Spectroscopy. Chemical Reviews. 101(6):1779-1808.
Davenport TC, Yang C-K, Kucharczyk CJ, Ignatowich MJ, Haile SM.  0.  Maximizing fuel production rates in isothermal solar thermochemical fuel production. Applied Energy. 183:1098-1111.