Biblio

Export 148 results:
Author Keyword [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is L  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Schalenbach M, Tjarks G, Carmo M, Lueke W, Mueller M, Stolten D.  2016.  Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis Journal of The Electrochemical Society. 163(11):F3197-F3208.
Li Y-F, Liu Z-P.  2018.  Active Site Revealed for Water Oxidation on Electrochemically Induced δ - MnO 2 : Role of Spinel-to-Layer Phase Transition. Journal of the American Chemical Society. 140(5):1783-1792.
Li Y-F, Liu Z-P.  2018.  Active Site Revealed for Water Oxidation on Electrochemically Induced δ - MnO 2 : Role of Spinel-to-Layer Phase Transition. Journal of the American Chemical Society. 140(5):1783-1792.
Houaijia A, Sattler C, Roeb M, Lange M, Breuer S, Säck JPeter.  2013.  Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water. Solar Energy. 97:26-38.
Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D.  2016.  An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. Journal of Power Sources. 326:120-128.
Bulfin B., Lowe A.J, Keogh K.A, Murphy B.E, Lübben O., Krasnikov S.A, Shvets I.V.  2013.  Analytical Model of CeO 2 Oxidation and Reduction. The Journal of Physical Chemistry C. 117(46):24129-24137.
Bulfin B., Lowe A.J, Keogh K.A, Murphy B.E, Lübben O., Krasnikov S.A, Shvets I.V.  2013.  Analytical Model of CeO 2 Oxidation and Reduction. The Journal of Physical Chemistry C. 117(46):24129-24137.
Wang R, Lay GY, Ding D, Zhu T.  2019.  Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr,Ce,Y,Yb)O3-δ electrolyte. International Journal of Hydrogen Energy. 44(26):13768-13776.
Varley J.B, Lordi V., Ogitsu T., Deangelis A., Horsley K., Gaillard N..  2018.  Assessing the role of hydrogen in Fermi-level pinning in chalcopyrite and kesterite solar absorbers from first-principles calculations. Journal of Applied Physics. 123(16):161408.
Lichty P, Liang X, Muhich C, Evanko B, Bingham C, Weimer AW.  2012.  Atomic layer deposited thin film metal oxides for fuel production in a solar cavity reactor. International Journal of Hydrogen Energy. 37(22):16888-16894.
Lichty P, Liang X, Muhich C, Evanko B, Bingham C, Weimer AW.  2012.  Atomic layer deposited thin film metal oxides for fuel production in a solar cavity reactor. International Journal of Hydrogen Energy. 37(22):16888-16894.
C
Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K.  2014.  CeO2 modified Fe2O3 for the chemical hydrogen storage and production via cyclic water splitting. International Journal of Hydrogen Energy. 39(25):13381-13388.
Levêque G, Abanades S, Jumas J-C, Olivier-Fourcade J.  2014.  Characterization of Two-Step Tin-Based Redox System for Thermochemical Fuel Production from Solar-Driven CO 2 and H 2 O Splitting Cycle. Industrial & Engineering Chemistry Research. 53(14):5668-5677.
Zhang S-L, Wang H, Lu MY, Zhang A-P, Mogni LV, Liu Q, Li C-X, Li C-J, Barnett SA.  2018.  Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells. Energy & Environmental Science. 11(7):1870-1879.
Zhang S-L, Wang H, Lu MY, Zhang A-P, Mogni LV, Liu Q, Li C-X, Li C-J, Barnett SA.  2018.  Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells. Energy & Environmental Science. 11(7):1870-1879.
Zhang S-L, Wang H, Lu MY, Zhang A-P, Mogni LV, Liu Q, Li C-X, Li C-J, Barnett SA.  2018.  Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells. Energy & Environmental Science. 11(7):1870-1879.
Zhang S-L, Wang H, Lu MY, Zhang A-P, Mogni LV, Liu Q, Li C-X, Li C-J, Barnett SA.  2018.  Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells. Energy & Environmental Science. 11(7):1870-1879.
Arifin D, Aston VJ, Liang X, McDaniel AH, Weimer AW.  2012.  CoFe2O4 on a Porous Al2O3 Nanostructure for Solar Thermochemical CO2 Splitting. Energy & Environmental Science. 5(11):9438-9444.
Lany S.  2018.  Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles. The Journal of Chemical Physics. 148(7):071101.
Shen X, Yanagi R, Solanki D, Su H, Li Z, Xiang C-X, Hu S.  2022.  Comprehensive Evaluation for Protective Coatings: Optical, Electrical, Photoelectrochemical, and Spectroscopic Characterizations. Frontiers in Energy Research. 9
Lany S.  2019.  Computational design of oxides and nitrides in the presence of defects and disorder.
Le Gal A, Abanades S, Flamant G.  2011.  CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/Zirconia Solid Solutions. Energy & Fuels. 25(10):4836-4845.
Hwang S, Porter SH, Laursen AB, Yang H, Li M, Manichev V, Calvinho KUD, Amarasinghe V, Greenblatt M, Garfunkel E et al..  2019.  Creating stable interfaces between reactive materials: titanium nitride protects photoabsorber–catalyst interface in water-splitting photocathodes. Journal of Materials Chemistry A. 7(5):2400-2411.
Hwang S, Porter SH, Laursen AB, Yang H, Li M, Manichev V, Calvinho KUD, Amarasinghe V, Greenblatt M, Garfunkel E et al..  2019.  Creating stable interfaces between reactive materials: titanium nitride protects photoabsorber–catalyst interface in water-splitting photocathodes. Journal of Materials Chemistry A. 7(5):2400-2411.