Catalytic activity of supported metal particles for sulfuric acid decomposition reaction

TitleCatalytic activity of supported metal particles for sulfuric acid decomposition reaction
Publication TypeJournal Article
Year of Publication2009
AuthorsRashkeev SN, Ginosar DM, Petkovic LM, Farrell HH
JournalCatalysis Today

Published on January 30th, 2009.
Production of hydrogen by splitting of water in the thermochemical sulfur-based cycles that employs the catalytic decomposition of sulfuric acid into SO2 and O2 is of considerable interest. However, all of the known catalytic systems studied to date that consist of metal particles on oxide substrates deactivate with time on stream. To develop an understanding of the factors that are responsible for catalyst activity, we investigate the fresh activity of several platinum group metals (PGM) catalysts, including Pd, Pt, Rh, Ir, and Ru supported on titania at 850°C and perform an extensive theoretical study (density-functional-theory-based first-principles calculations and computer simulations) of the activity of the PGM nanoparticles of different size and shape positioned on TiO2 (rutile and anatase) and Al2O3 (γ- and η-alumina) surfaces. The activity and deactivation of the catalytic systems are defined by (i) the energy barrier for the detachment of O atoms from the SOn (n=1, 2, 3) species, and (ii) the removal rate of the products of the sulfuric acid decomposition (atomic O, S, and the SOn species) from metal nanoparticles. We show that these two nanoscale features collectively result in the observed experimental behavior. The removal rate of the reaction products is always lower than the SOn decomposition rates. The relation between these two rates explains why the “softer” PGM nanoparticles (Pd and Pt) exhibit the highest initial catalytic activity.


'doi: 10.1021/acsenergylett.0c01132\n - I.Am.Hydrogen'
'\n - jyoungstrom'
'Jason thinks this is great.\n \n - jyoungstrom'
'\n - estechel'

Alternate JournalHydrogen Production - Selected papers from the Hydrogen Production Symposium at the American Chemical Society 234th National Meeting & Exposition, August 19-23, 2007, Boston, MA, USA
Zotero Collection