Biblio

Export 418 results:
[ Author(Asc)] Keyword Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Petkovich ND, Rudisill SG, Venstrom LJ, Boman DB, Davidson JH, Stein A.  2011.  Control of Heterogeneity in Nanostructured Ce1–xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity. The Journal of Physical Chemistry C. 115(43):21022-21033.
Petkovic L.M, Ginosar D.M, Rollins H.W, Burch K.C, Pinhero P.J, Farrell H.H.  0.  Pt/TiO2 (rutile) catalysts for sulfuric acid decomposition in sulfur-based thermochemical water-splitting cycles. Applied Catalysis A: General. 338(1):27-36.
Perret R.  2011.  Solar thermochemical hydrogen production research (STCH): Thermochemical cycle selection and investment priority.
Perkins C, Weimer AW.  0.  Solar-thermal production of renewable hydrogen. AIChE Journal. 55(2):286-293.
Park BKyeong, Scipioni R, Cox D, Barnett SA.  2020.  Enhancement of Ni-(Y2O3)0.08(ZrO2)0.92 fuel electrode performance by infiltration of Ce0.8Gd0.2O2-: δ nanoparticles. Journal of Materials Chemistry A. 8:4099–4106.
Park B-K, Zhang Q, Voorhees PW, Barnett SA.  2019.  Conditions for stable operation of solid oxide electrolysis cells: oxygen electrode effects. Energy Environ. Sci.. 12:3053-3062.
Park J.E, Bare Z.JL, Morelock R.J, Rodriguez M.A, Ambrosini A., Musgrave C.B, McDaniel A.H, Coker E.N.  2021.  Computationally Accelerated Discovery and Experimental Demonstration of Gd0.5La0.5Co0.5Fe0.5O3 for Solar Thermochemical Hydrogen Production. Frontiers in Energy Research. 9
Park B-K, Cox D, Barnett SA.  2021.  Effect of Nanoscale Ce0.8Gd0.2O2−δ Infiltrant and Steam Content on Ni–(Y2O3)0.08(ZrO2)0.92 Fuel Electrode Degradation during High-Temperature Electrolysis. Nano Letters. 21:8363-8369.
Papac M, Stevanović V, Zakutayev A, O’Hayre R.  2020.  Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nature Materials. 20
Palm DW, Muzzillo CP, Ben-Naim M, Khan I, Gaillard N, Jaramillo TF.  2020.  Tungsten oxide-coated copper gallium selenide sustains long-term solar hydrogen evolution. Sustainable Energy & Fuels. 5
Pagliaro M., Konstandopoulos A.G, Ciriminna R., Palmisano G..  2010.  Solar hydrogen: fuel of the near future. Energy & Environmental Science. 3(3):279–287.
N
Nishida S, Kobayashi S, Kumamoto A, Ikeno H, Mizoguchi T, Tanaka I, Ikuhara Y, Yamamoto T.  0.  Effect of local coordination of Mn on Mn-L-2,L-3 edge electron energy loss spectrum. JOURNAL OF APPLIED PHYSICS. 114(5):054906.
Nikolaidis P, Poullikkas A.  2017.  A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews. 67:597-611.
Ni M, Leung MKH, Leung DYC.  0.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy. 33(9):2337-2354.
Nemrava S, Vinnik DA, Hu Z, Valldor M, Kuo C-Y, Zherebtsov DA, Gudkova SA, Chen C-T, Tjeng LHao, Niewa R.  0.  Three Oxidation States of Manganese in the Barium Hexaferrite BaFe 12– x Mn x O 19. Inorganic Chemistry. 56(7):3861-3866.
Neises M, Roeb M, Schmücker M, Sattler C, Pitz-Paal R.  2010.  Kinetic Investigations of the Hydrogen Production Step of a Thermochemical Cycle Using Mixed Iron Oxides Coated on Ceramic Substrates. International Journal of Energy Research. 34(8):651-661.
Näslund M, Iskov H.  2012.  Accelerated lifetime testing and standardization of SOFC systems | Dansk Gasteknisk Center.
Nakamura T..  1977.  Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy. 19(5):467-475.
S. Naghavi S, Emery AA, Hansen HA, Zhou F, Ozolins V, Wolverton C.  0.  Giant onsite electronic entropy enhances the performance of ceria for water splitting. Nature Communications. 8(1)
Naghavi S.S, He J., Wolverton C..  2020.  CeTi2O6—A Promising Oxide for Solar Thermochemical Hydrogen Production. ACS Applied Materials & Interfaces. 12(19):21521-21527.